As of 8/7/20 our Silicon Valley facility is fully operational with capacity to support essential medical, defense & other printed circuit board fabrication projects. Please contact our team for assistance: or 510-933-9000

Friday, August 07th

Bare Printed Circuit Board Electrical Test


We can perform a visual inspection following the manufacturing process of a printed circuit board to find any potential problems. While that may work fine for a two-layer PCB, for multi-layer PCBs, it is almost impossible to visually inspect the internal layers once the board has been completed.  Therefore, visual tests are done on inner layers prior to lamination to find any problems and correct them.  However, the only way to truly verify that a multi-layer board will work is to conduct an electrical test on it.


This video covers much of the PCB Testing process. Read on below for more detail:


The Two Main Types of Electrical Tests

There are two typical types of electrical tests done on a bare printed circuit board: Flying Probe and Universal Grid.

Bed of Nails Electrical Test

Bed of Nails Electrical Test

Since the probes move around to all the PCB test points, flying probe does not require a fixture. Universal grid requires a fixture to conduct the test.  Universal grid is sometimes called a clam shell or bed of nails test.

The PCB test of a board will use capacitance and resistance.

A capacitance test will test for opens and shorts by sending a charge on the net (trace or plane) and then probe each net to measure the induced capacity.

Resistance test measures resistance as the current flows through a conductor (trace), in ohms.

A good conductor has LOW resistance.  At regular temperatures, the best conductor is silver.  The second-best conductor is, of course, copper. Due to this conductivity, the manufacturing of printed circuit boards relies heavily on copper.  The amount of resistance depends on how long, how wide and how tall the trace is.

For instance, if you have two traces of the same material and the same height but one is twice as long as the other, then the longer one will have twice as much resistance.

Flying Probe Electrical Test

Flying Probe Electrical Test P1

Flying Probe Electrical Test

Flying Probe Electrical Test P2

If you have two circuits that are the same length but one is thicker, the thicker trace will be half the resistance.  Resistance dissipates power in the form of heat.

Here are some of the key terms that you need to know.

Net: An entire string of points or connections from the first source point to the last point including component lands and vias.

Net list: A list of alpha-numeric locations that are used to describe a group of two or more points that are electrically common.

Shorts Test: Check to make sure that NO current flows between separate nets by measuring the amount resistance between them.

Opens Test: Check to make sure there is current flow from one “node” to the next for every net on the board.

100% Net List Test: Check of every “node” on every net on the board.

Optimized Net List Test: Check every “end of net” for all nets on the board and selected intermediate nodes on the board.

Do you have more questions about PCB testing? Contact us to discuss your next project.

PCB Test

Guidelines on how bare circuit boards should be tested are provided by IPC. Here is a copy of the guideline.

“IPC- 9252 Guidelines and Requirements for Electrical Testing of Unpopulated Printed Boards”

“Section 4.4 States: One hundred percent continuity and isolation electrical test is the confirmation that the actual electrical interconnect of conductive nodes matches a proven reference source, including but not limited to CAD/CAM digital data, master pattern artwork, or released drawings.”

Basically, what it is saying is that an “Optimized Net List Test” is sufficient to meet the guideline for the testing of a bare printed circuit board.

We test for opens and shorts based on optimized data from the Gerber files.

Ideally, when a bare board is tested you can be assured that it is a good board.  However, that relies upon the assumption that the board has been designed correctly.  A circuit board that has a problem with the design can still pass a bare board electrical test and not function correctly.  This does not happen very often but is always a possibility.

We measure closely how many boards do not pass electrical test as a measure of the quality from our manufacturing team.  If, for some reason, we see an increase in the number of PCB test failures, we can go back and review our processes to improve the quality.

If you have questions about bare board electrical tests please ask them in the discussion box below.

[Updated with Video 11/6/14. Original Post 4/13/12.]


Find this post helpful? Check out these related blog posts:

Introduction to IPC Inspection Guidelines

Cross Section Analysis: Inside a PCB


You can follow any responses to this entry through the RSS 2.0 Both comments and pings are currently closed.

One Response

  • R Boopathi ( August 28th, 2014

    pl elaborate on insulation test between tracks,
    what is the test spec and how to do it.
    Many PCB suppliers do not carry out the minimum insulation resistance between tracks
    pl suggest how to do it